Direct Methanol Fuel Cell Technology Book

Direct Methanol Fuel Cell Technology


  • Author : Kingshuk Dutta
  • Publisher : Elsevier
  • Release Date : 2020-02-25
  • Genre: Technology & Engineering
  • Pages : 564
  • ISBN 10 : 9780128191590
  • Total Read : 92
  • File Size : 10,6 Mb

DOWNLOAD BOOK
Direct Methanol Fuel Cell Technology Summary:

Direct Methanol Fuel Cell Technology presents the overall progress witnessed in the field of DMFC over the past decade, highlighting the components, materials, functions, properties and features, designs and configurations, operations, modelling, applications, pros and cons, social, political and market penetration, economics and future directions. The book discusses every single aspect of DMFC device technology, the associated advantages and drawbacks of state-of-the-art materials and design, market opportunities and commercialization aspects, and possible future directions of research and development. This book, containing critical analyses and opinions from experts around the world, will garner considerable interest among actual users/scientists/experts. Analyzes developments of membrane electrolytes, electrodes, catalysts, catalyst supports, bipolar plates, gas diffusion layers and flow channels as critical components of direct methanol fuel cells Includes modeling of direct methanol fuel cells to understand their scaling up potentials Discusses commercial aspects of direct methanol fuel cells in terms of market penetration, end application, cost, viability, reliability, social and commercial perception, drawbacks and prospects

Polymer Electrolyte Membrane and Direct Methanol Fuel Cell Technology Book

Polymer Electrolyte Membrane and Direct Methanol Fuel Cell Technology


  • Author : Christoph Hartnig
  • Publisher : Elsevier
  • Release Date : 2012-02-20
  • Genre: Technology & Engineering
  • Pages : 516
  • ISBN 10 : 9780857095480
  • Total Read : 87
  • File Size : 19,8 Mb

DOWNLOAD BOOK
Polymer Electrolyte Membrane and Direct Methanol Fuel Cell Technology Summary:

Polymer electrolyte membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs) technology are promising forms of low-temperature electrochemical power conversion technologies that operate on hydrogen and methanol respectively. Featuring high electrical efficiency and low operational emissions, they have attracted intense worldwide commercialization research and development efforts. These R&D efforts include a major drive towards improving materials performance, fuel cell operation and durability. In situ characterization is essential to improving performance and extending operational lifetime through providing information necessary to understand how fuel cell materials perform under operational loads. Polymer Electrolyte Membrane and Direct Methanol Fuel Cell Technology, Volume 2 details in situ characterization, including experimental and innovative techniques, used to understand fuel cell operational issues and materials performance. Part I reviews enhanced techniques for characterization of catalyst activities and processes, such as X-ray absorption and scattering, advanced microscopy and electrochemical mass spectrometry. Part II reviews characterization techniques for water and fuel management, including neutron radiography and tomography, magnetic resonance imaging and Raman spectroscopy. Finally, Part III focuses on locally resolved characterization methods, from transient techniques and electrochemical microscopy, to laser-optical methods and synchrotron radiography. With its international team of expert contributors, Polymer electrolyte membrane and direct methanol fuel cell technology will be an invaluable reference for low temperature fuel cell designers and manufacturers, as well as materials science and electrochemistry researchers and academics. Polymer electrolyte membrane and direct methanol fuel cell technology is an invaluable reference for low temperature fuel cell designers and manufacturers, as well as materials science and electrochemi

Polymer Electrolyte Membrane and Direct Methanol Fuel Cell Technology Book

Polymer Electrolyte Membrane and Direct Methanol Fuel Cell Technology


  • Author : Christoph Hartnig
  • Publisher : Elsevier
  • Release Date : 2012-03-19
  • Genre: Technology & Engineering
  • Pages : 430
  • ISBN 10 : 9780857095473
  • Total Read : 93
  • File Size : 19,7 Mb

DOWNLOAD BOOK
Polymer Electrolyte Membrane and Direct Methanol Fuel Cell Technology Summary:

Polymer electrolyte membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs) technology are promising forms of low-temperature electrochemical power conversion technologies that operate on hydrogen and methanol respectively. Featuring high electrical efficiency and low operational emissions, they have attracted intense worldwide commercialization research and development efforts. These R&D efforts include a major drive towards improving materials performance, fuel cell operation and durability. In situ characterization is essential to improving performance and extending operational lifetime through providing information necessary to understand how fuel cell materials perform under operational loads. This two volume set reviews the fundamentals, performance, and in situ characterization of PEMFCs and DMFCs. Volume 1 covers the fundamental science and engineering of these low temperature fuel cells, focusing on understanding and improving performance and operation. Part one reviews systems fundamentals, ranging from fuels and fuel processing, to the development of membrane and catalyst materials and technology, and gas diffusion media and flowfields, as well as life cycle aspects and modelling approaches. Part two details performance issues relevant to fuel cell operation and durability, such as catalyst ageing, materials degradation and durability testing, and goes on to review advanced transport simulation approaches, degradation modelling and experimental monitoring techniques. With its international team of expert contributors, Polymer electrolyte membrane and direct methanol fuel cell technology Volumes 1 & 2 is an invaluable reference for low temperature fuel cell designers and manufacturers, as well as materials science and electrochemistry researchers and academics. Covers the fundamental science and engineering of polymer electrolyte membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs), focusing on understanding and improving perform

Micro Fuel Cells Book

Micro Fuel Cells


  • Author : Tim Zhao
  • Publisher : Academic Press
  • Release Date : 2009-07-07
  • Genre: Technology & Engineering
  • Pages : 312
  • ISBN 10 : 0080878873
  • Total Read : 69
  • File Size : 17,8 Mb

DOWNLOAD BOOK
Micro Fuel Cells Summary:

Today's consumers of portable electronics consumers are demanding devices not only deliver more power but also work healthy for the environment. This fact alone has lead major corporations like Intel, BIC, Duracell and Microsoft to believe that Microfuel Cells could be the next-generation power source for electronic products. Compact and readable, Microfuels Principles and Applications, offers engineers and product designers a reference unsurpassed by any other in the market. The book starts with a clear and rigorous exposition of the fundamentals engineering principles governing energy conversion for small electronic devices, followed by self-contained chapters concerning applications. The authors provide original points of view on all types of commercially available micro fuel cells types, including micro proton exchange membrane fuel cells, micro direct methanol fuel cells, micro solid oxide fuel cells and micro bio-fuel cells. The book also contains a detailed introduction to the fabrication of the components and the assembly of the system, making it a valuable reference both in terms of its application to product design and understanding micro engineering principles. *An overview of the micro fuel cell systems and applications. *A detailed introduction to the fabrication of the components and the assembly of the system. *Original points of view on prospects of micro fuel cells.

Direct Liquid Fuel Cells Book

Direct Liquid Fuel Cells


  • Author : Ramiz G├╝ltekin Akay
  • Publisher : Academic Press
  • Release Date : 2020-09-10
  • Genre: Science
  • Pages : 328
  • ISBN 10 : 9780128187364
  • Total Read : 59
  • File Size : 7,8 Mb

DOWNLOAD BOOK
Direct Liquid Fuel Cells Summary:

Direct Liquid Fuel Cells is a comprehensive overview of the fundamentals and specificities of the use of methanol, ethanol, glycerol, formic acid and formate, dimethyl ether, borohydride, hydrazine and other promising liquid fuels in fuel cells. Each chapter covers a different liquid fuel-based fuel cell such as: Anode catalysts of direct methanol fuel cells (DMFCs), future system designs and future trends for direct ethanol fuel cells (DEFCs), development of catalysts for direct glycerol fuel cells (DGFCs), the mechanisms of the reactions taking place at the anode and cathode electrodes, and the reported anode catalysts for direct formic acid fuel cell (DFAFC) and direct formate fuel cell (DFFC), characteristics of direct dimethyl ether fuel cell (DDMEFC), including its electrochemical and operating systems and design, the developments in direct borohydride fuel cells, the development of catalysts for direct hydrazine fuel cells (DHFCs), and also the uncommonly used liquids that have a potential for fuel cell applications including 2-propanol, ethylene glycol, ascorbic acid and ascorbate studied in the literature as well as utilization of some blended fuels. In each part, the most recent literature is reviewed and the state of the art is presented. It also includes examples of practical problems with solutions and a summarized comparison of performance, advantages, and limitations of each type of fuel cell discussed. Direct Liquid Fuel Cells is not a typical textbook but rather designed as a reference book of which any level of students (undergraduate or graduate), instructors, field specialists, industry and general audience, who benefit from current and complete understanding of the many aspects involved in the development and operation of these types of fuel cells, could make use of any chapter when necessary. Presents information on different types of direct liquid fuel cells. Explores information under each section, for specific fuel-based fuel cells in more d

Fuel Cell Engineering Book

Fuel Cell Engineering


  • Author : Anonim
  • Publisher : Academic Press
  • Release Date : 2012-08-14
  • Genre: Technology & Engineering
  • Pages : 480
  • ISBN 10 : 9780123868756
  • Total Read : 98
  • File Size : 18,7 Mb

DOWNLOAD BOOK
Fuel Cell Engineering Summary:

Fuel cells are attractive electrochemical energy converters featuring potentially very high thermodynamic efficiency factors. The focus of this volume of Advances in Chemical Engineering is on quantitative approaches, particularly based on chemical engineering principles, to analyze, control and optimize the steady state and dynamic behavior of low and high temperature fuel cells (PEMFC, DMFC, SOFC) to be applied in mobile and stationary systems. Updates and informs the reader on the latest research findings using original reviews Written by leading industry experts and scholars Reviews and analyzes developments in the field

Electrocatalysis of Direct Methanol Fuel Cells Book
Score: 5
From 1 Ratings

Electrocatalysis of Direct Methanol Fuel Cells


  • Author : Jiujun Zhang
  • Publisher : John Wiley & Sons
  • Release Date : 2009-10-26
  • Genre: Technology & Engineering
  • Pages : 605
  • ISBN 10 : 9783527323777
  • Total Read : 73
  • File Size : 13,5 Mb

DOWNLOAD BOOK
Electrocatalysis of Direct Methanol Fuel Cells Summary:

This first book to focus on a comprehensive description on DMFC electrocatalysis draws a clear picture of the current status of DMFC technology, especially the advances, challenges and perspectives in the field. Leading researchers from universities, government laboratories and fuel cell industries in North America, Europe and Asia share their knowledge and information on recent advances in the fundamental theories, experimental methodologies and research achievements. In order to help readers better understand the science and technology of the subject, some important and representative figures, tables, photos, and comprehensive lists of reference papers are also included, such that all the information needed on this topic may be easily located. An indispensable source for physical, catalytic, electro- and solid state chemists, as well as materials scientists and chemists in industry.

Direct Alcohol Fuel Cells Book

Direct Alcohol Fuel Cells


  • Author : Horacio R. Corti
  • Publisher : Springer Science & Business Media
  • Release Date : 2013-12-02
  • Genre: Science
  • Pages : 370
  • ISBN 10 : 9789400777088
  • Total Read : 71
  • File Size : 8,9 Mb

DOWNLOAD BOOK
Direct Alcohol Fuel Cells Summary:

Direct Alcohol Fuel Cells: Materials, Performance, Durability and Applications begins with an introductory overview of direct alcohol fuel cells (DAFC); it focuses on the main goals and challenges in the areas of materials development, performance, and commercialization. The preparation and the properties of the anodic catalysts used for the oxidation of methanol, higher alcohols, and alcohol tolerant cathodes are then described. The membranes used as proton conductors in DAFC are examined, as well as alkaline membranes, focusing on the electrical conductivity and alcohol permeability. The use of different kinds of carbon materials as catalyst supports, gas diffusion layers, and current collectors in DAFC is also discussed. State of the art of the modeling is used to estimate performance and durability. The closing chapter reviews the use of DAFC in portable equipment and mobile devices and features a detailed discussion on the mechanisms of component degradation which limits their durability. This book is written to facilitate the understanding of DAFC technology, applications, and future challenges. It is an excellent introduction for electrochemical and material engineers interested in small fuel cells as portable energy sources, scientists focused on materials science for energy production and storage, as well as policy-makers in the area of renewable energies.